训练
这次我们还将使用目标检测来作为培训的重点
1.数据集制作
1.1标注
标注是人工智能数据集制作的非常重要的环节,你可以不会_数据集清洗_,但是不能不会标注,在比赛中国即使是标注好的文件,也需要拿来看看有没有失误的地方无论是声音,图像,还是自然语言处理的数据集都需要进行标注,作为学习的资料
1.2常用标注的方法
1.2.1使用软件
labelme
labelimg
这两个软件都可以通过pip安装来进行标注,这两个标注软件比较简单,同学们自行学习,这两个软件有什么缺点呢,就是图片需要一个一个的标,十分的费时费精力,
1.2.2使用百度的智能云平台
用百度的平台有什么好处呢,百度的平台是可以进行智能标注的,什么意思呢,用AI去标注AI训练的数据集,可以做到很快标注完大部分的照片这里的话我们具体的来介绍一下
https://www.bilibili.com/video/BV1234y137Mt/?vd_source=7dec7c8531017085df990bfd303b108f
注意点:
每个标签要标10个才可以智能标注,也就是自动标注
标注完后用roboflow去转换即可变成各种模型所需要的
1.2.3 yolov5划分数据集脚本
import os
import shutil
import random
random.seed(0)
def split_data(file_path, xml_path, new_file_path, train_rate, val_rate, test_rate):
each_class_image = []
each_class_label = []
for image in os.listdir(file_path):
each_class_image.append(image)
for label in os.listdir(xml_path):
each_class_label.append(label)
data = list(zip(each_class_image, each_class_label))
total = len(each_class_image)
random.shuffle(data)
each_class_image, each_class_label = zip(*data)
train_images = each_class_image[0:int(train_rate * total)]
val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]
test_images = each_class_image[int((train_rate + val_rate) * total):]
train_labels = each_class_label[0:int(train_rate * total)]
val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]
test_labels = each_class_label[int((train_rate + val_rate) * total):]
for image in train_images:
print(image)
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'train' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in train_labels:
print(label)
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
for image in val_images:
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'val' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in val_labels:
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
for image in test_images:
old_path = file_path + '/' + image
new_path1 = new_file_path + '/' + 'test' + '/' + 'images'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + image
shutil.copy(old_path, new_path)
for label in test_labels:
old_path = xml_path + '/' + label
new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'
if not os.path.exists(new_path1):
os.makedirs(new_path1)
new_path = new_path1 + '/' + label
shutil.copy(old_path, new_path)
if __name__ == '__main__':
file_path = r"F:\python代码\aibisai123-2\valid\images" #都是图片的路径
xml_path = r"F:\python代码\aibisai123-2\valid\labels" #都是标注信息的路径
new_file_path = r"F:\python代码\aibisai123-2\imageset" #自己建的想要塞进去的文件夹
split_data(file_path, xml_path, new_file_path, train_rate=0.7, val_rate=0.1, test_rate=0.2)